Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38260633

RESUMO

Memories formed early in life are short-lived while those formed later persist. Recent work revealed that infant memories are stored in a latent state. But why they fail to be retrieved is poorly understood. Here we investigated brain-wide circuit mechanisms underlying infantile amnesia in mice. We performed a screen that combined activity-dependent neuronal tagging at different postnatal ages, tissue clearing and light sheet microscopy. We observed striking developmental transitions in the organization of fear memory networks and changes in the activity and functional connectivity of the retrosplenial cortex (RSP) that aligned with the emergence of persistent memory. 7 days after learning, chemogenetic reactivation of tagged RSP ensembles enhanced memory in adults but not in infants. But after 33 days, reactivating infant-tagged RSP ensembles recovered forgotten memories. These studies show that RSP ensembles store latent infant memories, reveal the time course of RSP functional maturation, and suggest that immature RSP functional networks contribute to infantile amnesia.

2.
J Neurosci ; 43(32): 5810-5830, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37491314

RESUMO

To understand how the brain produces behavior, we must elucidate the relationships between neuronal connectivity and function. The medial prefrontal cortex (mPFC) is critical for complex functions including decision-making and mood. mPFC projection neurons collateralize extensively, but the relationships between mPFC neuronal activity and brain-wide connectivity are poorly understood. We performed whole-brain connectivity mapping and fiber photometry to better understand the mPFC circuits that control threat avoidance in male and female mice. Using tissue clearing and light sheet fluorescence microscopy (LSFM), we mapped the brain-wide axon collaterals of populations of mPFC neurons that project to nucleus accumbens (NAc), ventral tegmental area (VTA), or contralateral mPFC (cmPFC). We present DeepTraCE (deep learning-based tracing with combined enhancement), for quantifying bulk-labeled axonal projections in images of cleared tissue, and DeepCOUNT (deep-learning based counting of objects via 3D U-net pixel tagging), for quantifying cell bodies. Anatomical maps produced with DeepTraCE aligned with known axonal projection patterns and revealed class-specific topographic projections within regions. Using TRAP2 mice and DeepCOUNT, we analyzed whole-brain functional connectivity underlying threat avoidance. PL was the most highly connected node with functional connections to subsets of PL-cPL, PL-NAc, and PL-VTA target sites. Using fiber photometry, we found that during threat avoidance, cmPFC and NAc-projectors encoded conditioned stimuli, but only when action was required to avoid threats. mPFC-VTA neurons encoded learned but not innate avoidance behaviors. Together our results present new and optimized approaches for quantitative whole-brain analysis and indicate that anatomically defined classes of mPFC neurons have specialized roles in threat avoidance.SIGNIFICANCE STATEMENT Understanding how the brain produces complex behaviors requires detailed knowledge of the relationships between neuronal connectivity and function. The medial prefrontal cortex (mPFC) plays a key role in learning, mood, and decision-making, including evaluating and responding to threats. mPFC dysfunction is strongly linked to fear, anxiety and mood disorders. Although mPFC circuits are clear therapeutic targets, gaps in our understanding of how they produce cognitive and emotional behaviors prevent us from designing effective interventions. To address this, we developed a high-throughput analysis pipeline for quantifying bulk-labeled fluorescent axons [DeepTraCE (deep learning-based tracing with combined enhancement)] or cell bodies [DeepCOUNT (deep-learning based counting of objects via 3D U-net pixel tagging)] in intact cleared brains. Using DeepTraCE, DeepCOUNT, and fiber photometry, we performed detailed anatomic and functional mapping of mPFC neuronal classes, identifying specialized roles in threat avoidance.


Assuntos
Encéfalo , Neurônios , Camundongos , Masculino , Feminino , Animais , Vias Neurais/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Núcleo Accumbens/fisiologia
3.
Nature ; 613(7942): 160-168, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36477540

RESUMO

Multilocular adipocytes are a hallmark of thermogenic adipose tissue1,2, but the factors that enforce this cellular phenotype are largely unknown. Here, we show that an adipocyte-selective product of the Clstn3 locus (CLSTN3ß) present in only placental mammals facilitates the efficient use of stored triglyceride by limiting lipid droplet (LD) expansion. CLSTN3ß is an integral endoplasmic reticulum (ER) membrane protein that localizes to ER-LD contact sites through a conserved hairpin-like domain. Mice lacking CLSTN3ß have abnormal LD morphology and altered substrate use in brown adipose tissue, and are more susceptible to cold-induced hypothermia despite having no defect in adrenergic signalling. Conversely, forced expression of CLSTN3ß is sufficient to enforce a multilocular LD phenotype in cultured cells and adipose tissue. CLSTN3ß associates with cell death-inducing DFFA-like effector proteins and impairs their ability to transfer lipid between LDs, thereby restricting LD fusion and expansion. Functionally, increased LD surface area in CLSTN3ß-expressing adipocytes promotes engagement of the lipolytic machinery and facilitates fatty acid oxidation. In human fat, CLSTN3B is a selective marker of multilocular adipocytes. These findings define a molecular mechanism that regulates LD form and function to facilitate lipid utilization in thermogenic adipocytes.


Assuntos
Adipócitos , Proteínas de Ligação ao Cálcio , Metabolismo dos Lipídeos , Proteínas de Membrana , Animais , Feminino , Humanos , Camundongos , Adipócitos/citologia , Adipócitos/metabolismo , Tecido Adiposo Marrom/citologia , Tecido Adiposo Marrom/metabolismo , Proteínas de Ligação ao Cálcio/deficiência , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Membrana/deficiência , Proteínas de Membrana/metabolismo , Placenta , Triglicerídeos/metabolismo , Retículo Endoplasmático/metabolismo , Gotículas Lipídicas/metabolismo , Ácidos Graxos/metabolismo , Hipotermia/metabolismo , Termogênese
4.
Elife ; 112022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35997072

RESUMO

Quantitative descriptions of animal behavior are essential to study the neural substrates of cognitive and emotional processes. Analyses of naturalistic behaviors are often performed by hand or with expensive, inflexible commercial software. Recently, machine learning methods for markerless pose estimation enabled automated tracking of freely moving animals, including in labs with limited coding expertise. However, classifying specific behaviors based on pose data requires additional computational analyses and remains a significant challenge for many groups. We developed BehaviorDEPOT (DEcoding behavior based on POsitional Tracking), a simple, flexible software program that can detect behavior from video timeseries and can analyze the results of experimental assays. BehaviorDEPOT calculates kinematic and postural statistics from keypoint tracking data and creates heuristics that reliably detect behaviors. It requires no programming experience and is applicable to a wide range of behaviors and experimental designs. We provide several hard-coded heuristics. Our freezing detection heuristic achieves above 90% accuracy in videos of mice and rats, including those wearing tethered head-mounts. BehaviorDEPOT also helps researchers develop their own heuristics and incorporate them into the software's graphical interface. Behavioral data is stored framewise for easy alignment with neural data. We demonstrate the immediate utility and flexibility of BehaviorDEPOT using popular assays including fear conditioning, decision-making in a T-maze, open field, elevated plus maze, and novel object exploration.


Assuntos
Comportamento Animal , Software , Animais , Fenômenos Biomecânicos , Aprendizado de Máquina , Ratos
5.
Elife ; 102021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33949949

RESUMO

The medial prefrontal cortex (mPFC) and its abundant connections with other brain regions play key roles in memory, cognition, decision making, social behaviors, and mood. Dysfunction in mPFC is implicated in psychiatric disorders in which these behaviors go awry. The prolonged maturation of mPFC likely enables complex behaviors to emerge, but also increases their vulnerability to disruption. Many foundational studies have characterized either mPFC synaptic or behavioral development without establishing connections between them. Here, we review this rich body of literature, aligning major events in mPFC development with the maturation of complex behaviors. We focus on emotional memory and cognitive flexibility, and highlight new work linking mPFC circuit disruption to alterations of these behaviors in disease models. We advance new hypotheses about the causal connections between mPFC synaptic development and behavioral maturation and propose research strategies to establish an integrated understanding of neural architecture and behavioral repertoires.


Assuntos
Cognição , Emoções , Regulação da Expressão Gênica no Desenvolvimento , Memória , Córtex Pré-Frontal/fisiologia , Animais , Humanos , Transtornos Mentais/genética , Camundongos , Córtex Pré-Frontal/patologia , Comportamento Social
6.
Neurotherapeutics ; 18(2): 1226-1243, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33420588

RESUMO

Serotonergic agents can improve the recovery of motor ability after a spinal cord injury. Herein, we compare the effects of buspirone, a 5-HT1A receptor partial agonist, to fluoxetine, a selective serotonin reuptake inhibitor, on forelimb motor function recovery after a C4 bilateral dorsal funiculi crush in adult female rats. After injury, single pellet reaching performance and forelimb muscle activity decreased in all rats. From 1 to 6 weeks after injury, rats were tested on these tasks with and without buspirone (1-2 mg/kg) or fluoxetine (1-5 mg/kg). Reaching and grasping success rates of buspirone-treated rats improved rapidly within 2 weeks after injury and plateaued over the next 4 weeks of testing. Electromyography (EMG) from selected muscles in the dominant forelimb showed that buspirone-treated animals used new reaching strategies to achieve success after the injury. However, forelimb performance dramatically decreased within 2 weeks of buspirone withdrawal. In contrast, fluoxetine treatment resulted in a more progressive rate of improvement in forelimb performance over 8 weeks after injury. Neither buspirone nor fluoxetine significantly improved quadrupedal locomotion on the horizontal ladder test. The improved accuracy of reaching and grasping, patterns of muscle activity, and increased excitability of spinal motor-evoked potentials after buspirone administration reflect extensive reorganization of connectivity within and between supraspinal and spinal sensory-motor netxcopy works. Thus, both serotonergic drugs, buspirone and fluoxetine, neuromodulated these networks to physiological states that enabled markedly improved forelimb function after cervical spinal cord injury.


Assuntos
Medula Cervical/lesões , Membro Anterior/efeitos dos fármacos , Recuperação de Função Fisiológica/efeitos dos fármacos , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Agonistas do Receptor de Serotonina/uso terapêutico , Traumatismos da Medula Espinal/tratamento farmacológico , Animais , Buspirona/farmacologia , Buspirona/uso terapêutico , Eletromiografia/efeitos dos fármacos , Eletromiografia/métodos , Potencial Evocado Motor/efeitos dos fármacos , Potencial Evocado Motor/fisiologia , Feminino , Fluoxetina/farmacologia , Fluoxetina/uso terapêutico , Membro Anterior/inervação , Membro Anterior/fisiologia , Força da Mão/fisiologia , Ratos , Ratos Long-Evans , Recuperação de Função Fisiológica/fisiologia , Agonistas do Receptor de Serotonina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Traumatismos da Medula Espinal/fisiopatologia
7.
Exp Neurol ; 291: 141-150, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28192079

RESUMO

Enabling motor control by epidural electrical stimulation of the spinal cord is a promising therapeutic technique for the recovery of motor function after a spinal cord injury (SCI). Although epidural electrical stimulation has resulted in improvement in hindlimb motor function, it is unknown whether it has any therapeutic benefit for improving forelimb fine motor function after a cervical SCI. We tested whether trains of pulses delivered at spinal cord segments C6 and C8 would facilitate the recovery of forelimb fine motor control after a cervical SCI in rats. Rats were trained to reach and grasp sugar pellets. Immediately after a dorsal funiculus crush at C4, the rats showed significant deficits in forelimb fine motor control. The rats were tested to reach and grasp with and without cervical epidural stimulation for 10weeks post-injury. To determine the best stimulation parameters to activate the cervical spinal networks involved in forelimb motor function, monopolar and bipolar currents were delivered at varying frequencies (20, 40, and 60Hz) concomitant with the reaching and grasping task. We found that cervical epidural stimulation increased reaching and grasping success rates compared to the no stimulation condition. Bipolar stimulation (C6- C8+ and C6+ C8-) produced the largest spinal motor-evoked potentials (sMEPs) and resulted in higher reaching and grasping success rates compared with monopolar stimulation (C6- Ref+ and C8- Ref+). Forelimb performance was similar when tested at stimulation frequencies of 20, 40, and 60Hz. We also found that the EMG activity in most forelimb muscles as well as the co-activation between flexor and extensor muscles increased post-injury. With epidural stimulation, however, this trend was reversed indicating that cervical epidural spinal cord stimulation has therapeutic potential for rehabilitation after a cervical SCI.


Assuntos
Vértebras Cervicais/fisiologia , Membro Anterior/fisiopatologia , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/complicações , Estimulação da Medula Espinal/métodos , Análise de Variância , Animais , Biofísica , Modelos Animais de Doenças , Eletromiografia , Potencial Evocado Motor/fisiologia , Feminino , Força da Mão/fisiologia , Amplitude de Movimento Articular/fisiologia , Ratos , Ratos Long-Evans , Traumatismos da Medula Espinal/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...